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The kinetic scheme for chain polymerization involving diffusion-controlled termination is worked out in detail. It is 
shown that of the two consecutive diffusion steps in a termination, the translational diffusion of the chain centers and the 
segmental diffusion of the active ends to within termination distance, the latter is always rate controlling. Two models 
for segmental diffusion are examined in detail. In one the segmental diffusion constant is assumed to be proportional to 
the chain diffusion constant. This "Ball and Chain Model" leads to reasonable average termination rate constants but pre
dicts that the rate of polymerization varies with the 4/3 power of monomer concentration (M) and the 1/3 power of rate of 
initiation (Ri). In the second, physically more reasonable model it is assumed that segmental diffusion is characterized by 
a chain length dependence which is "Ball and Chain" for small chain lengths n and becomes independent of chain length as 
n exceeds JVL1 where Ni, is some characteristic segmental length associated with segmental diffusion. For values of Ni, < v, 
the mean kinetic chain length, the rate law is nearly conventional with very reasonable values of mean termination constants. 
These are given by 

, 4 pAB*r r fa i 
= 3V LXoA7LViJ 

where PAB = a factor estimated crudely at 1/8 to correct the segmental diffusion constant for chain entanglement and re
stricted direction of approach; ri = the macroscopic viscosity; Rs = the transition state separation of the ends. For 
V = 0.5c.p.; T = 3000K.; (R/x<>) = 1.4; NL = 100, ki = 1.1 X 108I./mole sec. At low degrees of polymerization, (v < 
Ni) the rate of polymerization should show departures from conventional kinetics with R? varying as some power of (M) 
slightly greater than unity and some power of ^i slightly less than 1/2. Techniques are developed for obtaining rate laws 
for polymerization systems with chain length dependent, termination constants in systems undergoing varying amounts 
of transfer. 

Introduction 
There has been indirect evidence for some time4'5 

that the termination reaction in free radical 
polymerizations is diffusion-controlled. Recently, 
direct measurements of the 2nd order termination 
rate6'7 have shown that for methyl methacrylate 
the apparent termination rate constant is inversely 
proportional to the viscosity of the medium over a 
thousand-fold range of viscosity. Incomplete data 
indicate that the same results hold for styrene 
polymerization, and it is likely that this is true 
for most other monomers which have values of 
kt, the second order termination rate constant, 
greater than or equal to kt for methyl methacry
late.8 

The inverse dependence of a rate constant on 
viscosity can be explained only in terms of a dif
fusion-controlled process, which is of course to be 
expected for radical-radical termination. How
ever, in the case of long chain radicals, diffusion 
is not a simple phenomenon, and there are at least 
two kinds of diffusion which can play a role in 
bimolecular termination. In addition, we may 
expect that a diffusion-controlled reaction between 
radicals will show some dependence on the chain 
size of the reacting chains. In such an event the 
usual kinetic assumptions regarding the individual 
termination rate constants may not be valid, and 
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the kinetic equations for polymerization will have 
to be reinvestigated. 

In the present paper we shall derive an equation 
for the diffusion-controlled reaction of long chain 
radicals, present a simple model for the diffusion 
process and finally show how it is possible to ob
tain explicit solutions to the steady-state kinetic 
scheme when the termination rate constants are 
functions of the chain lengths of the reacting 
radicals. 

I. The Diffusion Process.—In order for ter
mination to occur between two free radical species, 
the active centers must diffuse to within a distance 
of separation of less than 4A.9 If there is no signifi
cant barrier to reaction of these centers, the rate 
will be controlled by the rates of diffusion. 

In a solution dilute in radical species, the diffusion 
can be looked upon as a two-stage process. The 
first stage involves the translational diffusion of 
the centers of gravity of the two species to a 
distance sufficiently small that reaction can be 
completed without further change in this distance 
but merely by a segmental diffusion of the active 
centers of the chains to within the distance of 
about 3-4 A. needed for termination. We can 
represent this dual diffusion by the kinetic scheme 

ko 
A + B ^ [A...B] (1) 

k, 

[A. . .B]—S-AB (2) 

where [A. . .B] represents a proximate A-B chain 
pair whose centers of gravity are at a distance RA.B 
apart. Using stationary state kinetics we find for 
the stationary concentration of [A. . .B] 

*•• •"!•-¥££ *> 
(9) This would apply to recombination. For disproportionation 

we would consider the abstractable atom as an active center. 
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while for the ra te of termination 
d(AB) 

d/ 
= * K [ A . . . B ] „ 

_ £Efo(A)(B) 
(4) 

kl + ks 
For the second order termination rate constant 

we find 
&E&D 

kt = (5) hi + k% 

The rate constant kr> for formation of [A. . .B] 
pairs is given by the Smoluchowsky equation10 

for diffusion of particles into a sink of radius RAB. 

ko = 4xDABi?AB = 4,T(DA + DB)RAB (6) 

Here DAB, the diffusion constant of A relative to 
B, is the sum of the translational diffusion constants 
of A and B. If we assume tha t [A. . .B] comprises 
all proximate pairs of chains whose centers of 
gravity are separated by a distance less than or 
equal to RAB, then the equilibrium constant for 
the formation of such pairs, KAB is given by1 1 

KAB = 5 IT-RAB3 (7) 

Since &D/&2 = KAB this allows us to calculate k2 

kz = 3 Z W - R A B 2 (8) 

The ra te constant ks can be estimated by assum
ing t ha t termination occurs within the proximate 
pair, b y segmental diffusion of the active centers 
of A and B with an effective diffusion constant D E . 
If again we apply the Smoluchowsky equation, 
we obtain 

kE = 4TTDE-RECE (9) 

where C E is the mean concentration of active 
centers in the proximate pair and RB is the distance 
between the active centers ato termination, pre
sumably of the order of 3 to 4 A. The mean con
centration of active centers CE, is just the reciprocal 
of the mean tota l volume of the proximate pair. 
The mean volume F A B of the proximate pair can 
be est imated from our initial assumption t ha t end-
to-end coupling can take place between A and B 
without further motion of their centers of gravity. 
If the coupling corresponds to recombination, 
and we assume t h a t the volume occupied by the 
chain links in the transition s ta te resembles t ha t 
in the final polymer chain AB, then the equivalent 
radius RAB is given by the R a n d o m - W a l k relation 

-RAB2 = -RA2 + -RB2 (10) 
4 

Thus since C E = 1 / V A B and F A B = 5 TTRAB3 

O 

Cm kE — 
3.DE-RE 

( H ) 
4 T T / W -RAB3 

Substi tut ing all of these values back into equation 
5 we find 

, _ 47T-DE-PAB-RE-RAB /.„> 
' DAB^AB + DERE

 U ^ 

For two limiting cases we can write 
Case I : Slow segmental diffusion (DERB«DAB-
RAB) 

(10) M. Smoluchowsky, Z. phys. Chem., 92, 129 (1918). 
(11) This is obtained by assuming no interactions between the 

chains in proximate pair position. The concentration of such proxi
mate pairs then is given by the number of B chains per unit volume, 
whose centers lie within a sphere of radius RAB centered on an A chain 
center. 

h ^47T-DE-RE (13) 

Case I I : Slow chain diffusion (DERE»DABRAB 
kt >• 4:TDABRAB (14) 

In Case I we might expect to find DE independent 
of chain length except when A or B is very small. 
In this case kt for slow, end-controlled termination 
will not be very sensitive to chain length. How
ever it is expected tha t DE will vary inversely with 
viscosity and thus so will kt. 

A very special case of case I, which has been 
discussed briefly5 as the Ball and Chain Model 
is one in which DE is proportional to the transla
tional diffusion constant DAB- The Smoluchowsky 
equation then yields 

Case IA: Ball and Chain Model 
h = 4TT.PAB.DAB.RE (15) 

where P A B is a steric factor to take into account 
the fact t ha t diffusion together of the active 
segments is inhibited, both by the excluded volume 
of the radical chains and by entanglement of the 
radical chains. 

In Case I I , where translational diffusion is rate 
limiting, we can use the Einstein-Stoke's relation 
between 17 the viscosity and D the diffusion con
s tant 

D = *r/6TTT,r (16) 

This gives for kt 
2kT 

h = ~ (1/-RA + 1/.RB R A B 3„ 

Using equation 10 for RAB this becomes 

random walk result t ha t RA2 

tie chain length of A 

2kT 
3T7 LV^ ' RB 

and with the random walk result t ha t RA2 

where NA = the chain length of A 

2kT [V. . NAV/' 

*I = ~37 
IkT 
3r, /(») 

(17) 

(18) 

« NA 

(19) 

(20) 

I t will be noted tha t for Case I I , equations 19 and 
20 predict a very peculiar dependence of kt on 
chain length. The function / (« ) has a minimum 
value of 2.83 for JVA = NB and approaches (ATA/ 
/VB) 1 / ! for NA » NB- The case NB >> NA is 
of course completely symmetrical. The implica
tion of this result is t ha t once the two radical 
chains come to within a hydrodynamic distance 
RAB of each other, they will remain within this 
distance for a t ime sufficiently long t ha t termina
tion is certain to occur. While this seems possible 
when both A and B are long chain species, it does 
not seem so for the case t ha t either A or B is very 
small. If for example A is very small while B is 
not, we should expect t ha t most of the diffusing is 
done by A and £>AB -*• DA] DE -*• PABDA. But 

since R3 is then > > RA. > RE, we see tha t from 
our original equation 12 

kt > 4TT.PAB.DA.RE (21) 

which is a result identical to t h a t obtained with 
the Ball and Chain Model (eq. 15). The alterna
tive to this is to assume the implausible result t ha t 
a small radical in the vicinity of a large one is 
unusually likely to find the reactive center of the 
large radical before separating. 

4tt.Pab.Dab.Re
4tt.Pab.Da.Re
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I t should be noted t ha t the chain length de
pendence of f (w) is very small. In any polymeriz
ing system the bulk of the radical population will 
have chain lengths within a factor of 2 of the mean 
chain length. Thus the general range of NA/NB 
will be from 0.5 to 2.0, while the extremes will be 
at 0.25 to 4. For NA/NB = 0.5 or 2.0; f(«) = 
2.98, only 5 % greater than its minimum value 
f( l) , while for NA/NB = 1/4 or 4; f(w) = 3.35, 
only 18% larger than f ( l ) . Even for the ex
treme range NA/NB = 0.1 or 10 f(10) = 4.35 
which is only 50% greater than f ( l ) . 

In consequence of this small chain length de
pendence we can assume with little error tha t 
f(w) = f(l) and calculate kt from equation 19. 
For T? = 0.5 c.p. at 3000K. we find values of kt of 
about 1 X 1010 l i ter/mole sec , independent of the 
nature of the monomer. This value is about 200 
times too large compared to experimental results 
and leads to the erroneous prediction tha t all kt 
should be identical. 

The conclusion from the above observations is 
tha t chain diffusion cannot be the rate limiting 
process in termination. The corollary is tha t the 
slow diffusion step must be segmental diffusion. 
The implication of this in terms of our original 
scheme (equations 1,2) is tha t the reverse step 
(£2) of separation of the centers of gravity of two 
proximate chain pairs is always faster than the 
segmental diffusion together of the active ends. 
This is a physically quite reasonable result which 
further implies tha t the proximate chain pairs 
[A. . .B] are always in equilibrium with (A) and 
(B). One also can show tha t the rate of chain 
growth during the proximate chain termination 
step is negligibly slow. 

We thus have reduced the termination process to 
Case I. To solve this rigorously would require 
a quanti ta t ive model for the slow segmental 
motion of chains. Unfortunately, none is avail
able so tha t one is reduced to making more or less 
reasonable guesses about the quant i ty DE (equation 
13). 

Insofar as the chain length dependence of DE 
is concerned, the Ball and Chain Model (Case IA) 
corresponds to the extreme case and might be 
expected to be valid only when ATA or A^B or both 
are small. 

For the Ball and Chain Model, the use of the 
Einstein-Stokes relation leads to 

h-wPaRB(i: + i) (22) 
2kT 

= ^ P PXBRE g(R) (23) 
3») 

The chain sensitivity of this ra te constant, con
tained in the expression g(R) = (1/RA + 1/-RB), 
is the greatest of all the cases considered. 
I t predicts for example tha t the chances of termi
nation of a radical of chain length 10s are about 
16 times greater with a radical of chain length 1 
than by a radical of comparable size. 

If we assume tha t RA, the hydrodynamic radius 
of the polymer chain is proportional to WA1A then 
RA = XO«A'A where x0 is a constant of propor
tionality.12 The value of kt for the Ball and Chain 

(12) From the random walk approximation, .to "^2.2 A1 for styrene. 

Model then becomes 
2kT PABi?E / 1 1 \ . . 

ht = "37 -^r VnIv. + ^vV (24) 

As the chain length is increased one would expect 
to find t ha t DB must become independent of the 
length. This can be expressed empirically as 
DE = DEA + -DEB with DEA (or -DEB) given by 

PEA = PEA0 + DE(RA) (25) 
A simple function which satisfies these conditions is 

DEA . zv Q_ + _y (26) 
where RL corresponds to the limiting value of the 
hydrodynamic radius a t which the segmental 
mobility becomes independent of chain length; 
i.e. DEA —- DE0/RL as RA -*• =° .13a If we take D°E 

as PAB times the Einstein-Stokes coefficient (equa
tion 16), then Case I reduces to 

- ^ g ['+?&+*)] «-» 
or, with RA = X0MA I / ! 

_ 4PABkT ( -RE \ I- «LV_* /_J__ 1 \ " | 
* ' ~ 3T, W L 1 A , / L + 2 îVA1A NB1/*) I 

(28) 

The chain length dependence of kt is now very 
small if WL is of the order of magnitude of 100.13° 
Thus with nL = 100 the chain length dependent 
term in brackets changes from a high value of 4.2 
with NA = A^B = 10 to 2.8 at NA = NB = 50; 
2.0 at NA = NB = 100; 1.4 at N^ = NB = 500; 
1.3 at NA = NB = 1000 and 1.01 at NA = Ar

B = 
10,000. In the usual range of polymerization 
conditions NA, A7B run from about 100 to 1000, 
corresponding to a 3 5 % decrease in kt with in
creasing degree of polymerization. As we shall 
see later, equations 24 and 28 give quite reasonable 
values for the termination rate constants. I t is 
now of interest to see how a chain-length dependent, 
termination rate constant can be incorporated 
into the kinetic scheme. 

II . The Kinetic Equations with no Transfer.— 
For purposes of simplicity let us consider a free 
radical, chain polymerization in which transfer re
actions are unimportant bu t in which termination 
is diffusion-controlled. The chain scheme will be 
(M is monomer) 

R\ 

Initiation M >• P1 

Propagation Pi + M • >• P2 

Pn + M - A - P 1 1 + 1 
™ttna 

Termination Pn + Pm >• stable products (29) 
Ri is the rate at which monomer is converted into 

the simplest radicals Pi , kp is the rate of propagation 
which we have assumed independent of chain size14 

while &tmn are the chain-length dependent, termi
nation rate constants. 

Applying stationary state kinetics to this scheme 
for the individual radicals we find 

(13) (a) Intuitively one would guess that Ri1 corresponds to about 
100 chain units, (b) Note that equation 28 reduces to 24 as KL —*• °° . 

(14) This seems quite reasonable since the experimental evidence 
is that the propagation step requires activation energy and is not dif
fusion controlled. 
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P i = E ktnmPnPm = P 2 E ktnmXnXm (30) 
n,m n,m 

where P = 2 P n , the total concentration of radicals 
and xn = Pu/P, the mole fraction of radicals of 
chain length n. For the individual radical con
centrations we find 

P1 = X1P = * ' (31) 
£pAf + ? 2 J fet,m*m 

m 
and the set of equations 

X n 

* n - l 

kBM 

or 
^n = K„_I (1 + 

m 

P 

AnIf L*. ~r 
(32) 

(33) 

The rate of polymerization is given by Rp, 
the rate of loss of monomer 

^ P = - ^jr = M«> (34) 

If we define a mean kinetic chain length v as 
the number of monomer units polymerized per 
radical formed, then 

KMP 

Ri P* E *• trirr\XTtXvr\ (35) 

This definition of v can be used to simplify the 
expressions for the mole fractions of radicals. 

- \ [i + £' E **»*»] ' K1 «= -

X, 

M - I l -

P8 

1 + JT E t̂nm*l 
• ] " ' 

or substi tuting for (P) 2 from equation 30 

Xl = - 1 + E fetim*m/>' E ^tnm*n»m J 
P L m n,m J 

*~:ft 
E kn 

i + 
^ / j fS\.nTnXnXm 

(36) 

(37) 

(38) 

(39) 

Let us now define a dimensionless parameter fnm 

which will express the chain length dependence of 
the termination rate constants 

/nm = Atnm/fctn (4O) 

We define also the auxiliary quantit ies fn and F 

Jn = (/nm) ~ Z-I JnmXm (41) 
m 

P= (U) = E/n*o (42) 
n 

Equations 38 and 39 now become 

* i = ; ( l + / i / " P ) - 1 ^ . = \ I J (1 +Z 1 AP)- 1 (43) 

or 
K - I 

InCx11O = - I n ( I + / i A P ) (44) 

In (x,>>) = - E In ( l + ^ ) (45) 

Now it can be shown t h a t / n < < vF, when the 
chain length is great15 so t ha t it is permissible to 
expand the logarithms and taking only the first 
terms in the series we have 

(15) Note that when/nm - l,fa/vF - 1/yaadx, - t~",/i>. 

In (x.t>) = 
E /= 

» - 1 - 4>./vF (46) 

With 0 S = E fa
rt - 1 

The set of equations represented by equation 46 
can in principle be solved for the mole fractions 
xs if /nm are known. However, the solution is 
extremely difficult and another approach is indi
cated. I t may be observed t ha t the mole fractions 
must satisfy the normalization condition; 2x s = 1. 
Applying this to equation 40 we find 

v = E e x p ( - * . / * P ) (47) 
S 

or where the chain length is sufficiently long to 
replace the sum by an integral 

- / ; 
exp (— 0,/eP)ds (48) 

This last equation defines an algebraic relation 
between the quantities y and F which once solved 
completes the solution of the problem without the 
necessity for solving the system of equations 46.16 

Let us first note tha t the kinetic parameters of 
interest, P, Rp and v can all be related explicitly to 
F 

P = Pi'A/fttn V=PV= (49) 
Pp = kpMP = ^MRi1AZk01

1AF1A (50) 

v = Pp/Pi = kpM/Ri'Aktn'AF'A (51) 

If then we can obtain a numerical relation be
tween v and F, it can be introduced into equation 
51 to solve for v and F in terms of the kinetic 
parameters and so on for P and Rv and finally xs-

The solution of equation 48 for an algebraic 
relation between v and F cannot be done generally 
bu t only in particular cases where the function 
/nm is known. In the Appendix we shall show how 
to obtain solutions of equation 48 in a number of 
simple cases. 

I I I . The Kinetic Equations with Transfer.— 
When the growing radical chains can transfer their 
activity to species S we must add to the kinetic 
scheme (equations 29) these steps 

k, 
Transfer p-„ + S *- P n + S-

Re-initiation 
kn 

S- + M — * - M - , 

kttn 
S ' + P ' n > SPn Termination 

in which we have assumed t ha t transfer is inde
pendent of chain length. This is justified by the 
same arguments used for assuming propagation 
independent of chain length. 

Applying the stat ionary s ta te method we find 
for the stat ionary concentrations of S- and P -

5- = ktS-

P 
and for P ' 

P1 = P' [ 

kuM + P'SktlmXm 

IE 

(52) 

ifttnm^m^n "T" (53) 
kilM + P2£tfm*n 

To avoid a complex arithmetical problem we 
shall make the reasonable assumption t ha t the 

06) The auxiliary equation defining F 
P = J" f fnmXnxm An dm 

~ J J /nm exp — [(^n + </>m)A] dndm/v2 

is not independent of equation 48 but in particular cases can be shown 
to be derivable from it. 
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transferred radicals S' are much more likely to 
reinitiate chains by attack on monomer than they 
are to terminate chains.17 We then can simplify 
equations 52 and 53 by neglecting P 2 ktimXm<< 
kitM. If in addition we assume that the rate 
of re-initiation of chains by S is much faster than 
the rate of transfer so that 5 ' < < P we have: 

l'„ M^L «1 (54) 
P Ji11(M) ^ K° ' 

Ri ~ P2 S fctnmSm*,, (55) 
which is the same as the previous equation for Pi 
(eq.30). 

The transfer conditions now comprise a situation 
in which the transferred radical concentration 
S' is a small fraction of the total concentration of all 
radicals so that we can neglect their effect on 
termination processes. Effectively, each time 
transfer occurs, the new radical re-initiates and 
the net effect of the transfer is to decrease the 
molecular weight without changing the over-all 
rate of polymerization (neglecting the effect of 
kt). 

If we now define a transfer chain length vi 
as the number of moles of monomer polymerized 
per mole of transfer then 

Using the same procedure as before we find for 
the mole fractions of radicals 

In X1 = 1„ (-1 + i ) - £ _ h (57) 
\V VlJ Vt Vt 

where <£s and F are given by equations 46 and 42. 
Again a solution for F in terms of v and vt is 
possible and will give the values of Rp, v and P 
(equations 49-51). 

Discussion 
The model of slow translational diffusion (Case 

II) leads to conventional kinetics. However, as 
noted earlier, the model cannot be correct so we 
turn to the slow segmental motion models. Of 
these the Ball and Chain Model (Case IA) yields 
an extreme dependence of kt on chain length and 
leads to a rate law in disagreement with the usual 
expression (eq. A 11). This would make it dif
ficult to compare numerical results for kt were it 
not for the fact that the differences are small. 
We can make a simulated comparison in the two 
extreme cases of no transfer or excessive transfer. 
When transfer is negligible, the comparison is 
given by 

*»'/» = RlV>b'/>kM'/'/Mi/>kv'/> (58) 
kt is again, the apparent termination constant. 

When we calculate t̂11 at viscosities of V2 cp. 
(27°) from equation 24, setting RB/XQ = 1.4, we 
find that £ t l l~4.5 X 109 P A B l./mole sec. In the 
factor PAB we include the correction to the Smolu-
chowski equation which arises from the fact that 
the diffusion together of the active centers is 
blocked by neighboring groups as well as chain 
entanglement. A crude estimate of PAB from 
geometrical consideration gives it a value of about 
V8 for styrene and other vinyl monomers of com
parable dimensions. This would make kta about 
6 X 108 l./mole sec. for the Ball and Chain Model. 

(17) At the opposite extreme when S' > P and termination is pre
dominantly by S , the kinetics become very simple. 

Inserting this value of kta into equation 58 and 
using some typical values of Ri, M and kp, we 
obtain a value of kt ~ 3 X 108 which is high by a 
factor of 3 over the value listed for kt (styrene) 
under the same conditions. Similar calculations 
for methyl methacrylate yield £ t ~l-5 X 108 1./ 
mole sec, which is again higher by about a factor 
of 6 than the reported values. This order of 
agreement is within the limits of accuracy of both 
the model used and the simulated comparison and 
may be considered as satisfactory agreement. 

Under conditions where chain length is governed 
principally by transfer, the kinetics of the Ball 
and Chain Model are closer to that of the con
ventional treatment and the simulated comparison 
of kt is (eq. A28) 

fc-2'V,(^)V,h- ( 5 9 ) 

When S~M, the values of &f/kp~10 -6 so 
that jfet~l.l X 10-2&t„~6 X 106 l./mole sec. This 
is lower by about a factor of 3 to 10 than the ob
served values for termination constants. How
ever, the implications of the above numbers, 
when transfer is chain length determining,18 

are that the mean degree of polymerization is 
about 106. This would apply only to a very high 
molecular weight of the order of 107 and is not a 
typical situation. For a more typical situation 
with a mean degree of polymerization of about 400 
(i.e., kpM/kt S = 400), the value of /fet~l.l X 
IO8 l./mole sec, which is high by about a factor 
of three. Again the factor is within the range of 
uncertainty of both the assumptions of the model 
and the crudity of the method of comparison. 

For the semi-empirical model (eq. 28), the calcu
lation in the Appendix (eq. A20) shows that the 
value of F is very close to (1 + « L 1 / ! ) - 1 a n d only 
slightly dependent on the kinetic parameters so 
long as n\,<v, which seems quite reasonable. The 
experimental termination constant is then ap
proximately equal to £tu/(l + «L ! / !)> and from 
equation 28 we find using 77 = 0.5 c.p., T = 3000K., 
P E A O = 1.4 that kt = 1.1 X 108 l./mole sec. for 
«L = 100 and 2.5 X 108 for the low value of «L = 
20. These values are within a factor of 3 of the 
experimental values for styrene and methyl meth
acrylate and can be considered in excellent agree
ment with the data. 

The considerations in the present paper then 
would lead us to conclude that termination reactions 
between polymer radicals are diffusion controlled, 
the slow step being the segmental motion of the 
active end of the polymer chain and that the ef
fective diffusion constant for this step becomes 
independent of chain length for some limiting 
chain length of the order of about 100. Under 
such conditions the termination constant is in
sensitive to radical chain length and the con
ventional polymerization kinetics are appropriate. 

Appendix 
The Effect of Chain-length dependent termination on 

polymerization kinetics. Case IA. 

/mn = l(w> + 5P7.) ; no transfer (A1) 

(18) Note that the ratio (kpM/ktS) — vt is the mean kinetic chain 
length under these conditions. 
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This corresponds to the Ball and Chain Model (eq. 24) 
Then (see equations 40-42)19 

and 

U = 2 (»~ 'A + I XmTO^1AdJMJ 

F — I xmm 1A dm Jo 
s /*°° 

<pa = S1A + » I xmm 1A dm 
2 J o 

(A2) 

(A3) 

(A4) 

'A -J dr (A5) 

The normalization equation 48 becomes 
C° ( s 2sVA ds 

1 = Jo e x p(~2-;--^jT = 

/*» / r 2rVA 
Jo e X P ( " 2 - — 

where r = s/v and the dimensionless quantity b = vV^F. 
Equation Ao now can be solved for the value of b. The 
procedure is to convert it, by simple change of variables 
and integration by parts into the form 

e-82 = 2 g ITA [1 - Erf(g)] (A6) 
where g = 21AJ. This equation, involving the error func
tion Erf(g) and its derivatives, is tabulated for all values of 
g. It has only one root which is then determined numeri
cally, g = 0.43. Thus we find 

b = i V A = 21AZg = 3.29 (A7) 
Substituting this into equations 49 to 51 we find 

F = (VA^n
1A-Ri1A/VA(JIf)2A (A8) 

P = VAAf1Ai^Wi2Ak1 1
2A (A9) 

v = kv'/>Ml/»/bV> ktu'/>Rf/> (AlO) 
and for the rate of polymerization 

Rp = VA-V/'AiVA/iVAkt^A ( A l l ) 
As might have been anticipated from the model itself, 

the rate is of a higher order than first in monomer and a 
lower order than half in initiation rate. 

Case I.— 

'mn — 
[ l + ^ ( M A - 1 A + «B-'A)] 

no transfer (A12) 

/ ; xm m 1A dm ] 

[1 + WL1A] 
This corresponds to slow segmental diffusion (eq. 28) 
The same substitutions yield (c = 1 + ML1A) 

, , , "L1A / . 
CJn = 1 H 2 " I " 

cF = 1 + » L ' A J XL 

where 

a = ML'A/VVS; b = C1A I xm Wj-1A dt, 

ab\ 

. m 1A dm = 1 + ab 

(A13) 

(A14) 

c<f>s = s I 1 + ~i) + ML1/VA 

The normalization condition now becomes 
\ r (2 + ab\ C1A a } 

1 = J0
 exp r 2 vrq^z,; ab)\ 

(AIo) 

dr (A16) 

&e~p' / 2 + gftV/ 
4 \ 1 + a 6 / 

; dx (A17) 

+ oft/ (1 
A change of variable and integration by parts gives 

Vi LI1A /•# 
~2 Jo 

with p* = aV(I + o6)(2 + a i ) . 
Equation A17 defines a relation between a and b which 

again can be solved numerically from tabulated functions 
of the error integral and its derivatives. Solution of this 
equation shows that 0 . 5 < 6 < 1.76 with very weak depend
ence on a in this range. The result is that we can set 

F ~ (1 + ML 1 AZVA)Z(I + nL'A) (A18) 

Substituting for v from equation 51 we find 

F = TT^-rn I1 + n^hd F,/i^ (A 1 9^ (1 + WLV') 

with d2 = ktu'/'Ri'/'/kp M~l/v. Since ML1A > 1, F will 
be small and the term in brackets in equation A19 is close 
to unity. Thus setting F1A ~ (1 •+• MLVZ)-VI ~ ML"1 /8 

1 
(1 + 

— 1 7 7 ) [1 + » L ' / . J ] (A20) 

Ru 
fepJgi'A(M) (1 + ML 1A)V' 

^t11
1A (1 +ML1Ad)1A 

and for MLVs d < 1: 

M V A ( M ) 
*„ *t.i 'A 

(1 + ML1A)1A [.- î] 

(A21) 

(A22) 

Since d = R\l/*/Ml/> we note that the departure of the 
rate from conventional kinetics is represented by the term 
in brackets. The effect is to give an over-all rate, Rv 
which varies as somewhat less than 1/2 order in Ri and some
what greater than first order in (M). 

Case IA (with transfer).—The normalization condition 
now leads to (eq. 57) 

+ - ) - — vt 2v) vF 

Using the orthogonality relation for xe we can write 

_2_ 
T1A 

In xB = In ( 1 + i ) - ( - + i f ) 
\v vt/ \vt 2v/ 

= pee 2 . i / , 
2(x + v, 

with the quantity g defined by 
b-w.fo'^*] 

(A23) 

(A24) 

2xf 
(A25) s vP (vt + 2v) 

This defines a relation between g and vt and v which we 
now can solve numerically. The LHS of eq. A24 varies 
between zero when v»vt (i.e. large rates of transfer) 
and 1A when v « vt (i.e. — little transfer). The RHS of 
eq. A24 varies monotonically from zero when g = 0 to 
unity as g—*• °=. A solution is possible only for values of g 
which make the RHS less than V2, an<3 by using the tables 
of error functions it can be shown that this corresponds to 
values of g < 0.43.20 But for such small values g it is of 
permissible to expand the RHS as a power series in g and to 
a sufficient degree of accuracy we can take the first term, 
whereupon 

" - • w- - (A26) -1A , 
2(x + vt) 

or replacing g from equation A25 we have 

F = i f 2n T A = r 8 x ( y + " ' H ~ ' A (A27) 
gVv(vt+%v)\ L*xf(2» + *f)J y ' 

While it is possible to substitute for v from equation 51 
and obtain an explicit solution for F in terms of the rate 
parameters, it is more instructive to observe that equation 
A27 has two limits. In the first when there is very little 
transfer, vt » v, and F —> (8xZx)'A which corresponds to 
our previous solution (equation A7), though not exactly.21 

The second limit obtains when there is much transfer 
(vt << v), when F —> ( 4 V X O 1 A . Substituting this latter 
result into the equation 50 leads to22 

_ fep'AJf'AR.'/. . . 
K p ~ 21A7TV^1

1Ak11
1AS1A (^> 

If in particular the transfer agent S is the monomer, then 
the rate of polymerization is once again proportional to 
the first power of M. The dependence on initiation rate 
is normal, i.e., half order. 

We have found quite generally that explicit solutions of 
the kinetic equations are possible whenever ktmn can be 
written as sums of terms involving m, w, or m/n raised to 
arbitrary powers. More complex functions such as equation 
19 can be approximated quite well by such functions. Thus 
f(n) = 0.82 + (MBZMA)1A + (KAZMB)'A fits equation 19 
to within 3 % over the entire range of interest, and the solu
tion for this/(w) follows quite readily the general method.23 

The inherent symmetry of f(n) with respect to m and n 
make such approximations quite straightforward. 

(19) In all of the above we have replaced sums by integrals. 

(20) Note that this maximum corresponds to the previous solution 
(eq. A6) in the absence of transfer). 

(21) The next higher term in the series expansion of equation A27 
leads to a correction factor to F of 1/[1 + ivt2/7r2(v + rt)r>) which 
approaches 0.71 for vt > > v-

(22) A simple solution for F which satisfies both limits precisely 
and follows equation A27 reasonably well is: F = 3.3 {v~~ A -f- 1.06 
«f-'A). 

(23) We have obtained the explicit solutions for this case but omit 
them for lack of particular interest. 


